57 research outputs found

    Mapping spot blotch resistance genes in four barley populations

    Get PDF
    Bipolaris sorokiniana (teleomorph: Cochliobolus sativus) is the fungal pathogen responsible for spot blotch in barley (Hordeum vulgare L.) and occurs worldwide in warmer, humid growing conditions. Current Australian barley varieties are largely susceptible to this disease and attempts are being made to introduce sources of resistance from North America. In this study we have compared chromosomal locations of spot blotch resistance reactions in four North American two-rowed barley lines; the North Dakota lines ND11231-12 and ND11231-11 and the Canadian lines TR251 and WPG8412-9-2-1. Diversity Arrays Technology (DArT)-based PCR, expressed sequence tag (EST) and SSR markers have been mapped across four populations derived from crosses between susceptible parental lines and these four resistant parents to determine the location of resistance loci. Quantitative trait loci (QTL) conferring resistance to spot blotch in adult plants (APR) were detected on chromosomes 3HS and 7HS. In contrast, seedling resistance (SLR) was controlled solely by a locus on chromosome 7HS. The phenotypic variance explained by the APR QTL on 3HS was between 16 and 25% and the phenotypic variance explained by the 7HS APR QTL was between 8 and 42% across the four populations. The SLR QTL on 7HS explained between 52 to 64% of the phenotypic variance. An examination of the pedigrees of these resistance sources supports the common identity of resistance in these lines and indicates that only a limited number of major resistance loci are available in current two-rowed germplasm

    Morphological and molecular characterization of Curvularia and related species associated with leaf spot disease of rice in Peninsular Malaysia

    Get PDF
    Curvularia species are important phytopathogens reported worldwide. They are closely related; consist of major destructive pathogens mainly for grasses and cereal plants including rice (Oryza sativa). A leaf spot symptom of rice is one of the common symptoms found in the rice field and caused reduction of rice yield. However, there are no reports on Curvularia species associated with rice leaves showing spot symptoms. The objectives are to isolate and characterize Curvularia and related species from leaf spot of rice by using morphological and molecular characterization and to determine the phylogenetic relationship between the isolated fungi. Fungal isolation was done from diseased rice leaves showing leaf spot symptoms collected throughout Peninsular Malaysia. Thirty-three isolates were recovered and identified based on their morphological characteristics such as conidia morphology, colony appearance, pigmentation and growth rate for species delimitation. Internal transcribed spacer (ITS) region was amplified to confirm the species identification. The 33 isolates were identified as Bipolaris sorokiniana (10 isolates), Curvularia hawaiiensis (8 isolates), C. geniculata (6 isolates), C. eragrostidis (6 isolates), C. aeria (2 isolates) and C. lunata (1 isolate). A phylogenetic tree was constructed based on ITS sequences using neighbour-joining method. The tree grouped members of Curvularia and Bipolaris into different clades. The phylogenetic tree indicated that the presence of two groups of fungi species; highly virulent and mild pathogens. In conclusion, Curvularia species and Bipolaris sorokiniana were present in rice field in Malaysia and associated with leaf spot of rice

    Altered mRNA Editing and Expression of Ionotropic Glutamate Receptors after Kainic Acid Exposure in Cyclooxygenase-2 Deficient Mice

    Get PDF
    Kainic acid (KA) binds to the AMPA/KA receptors and induces seizures that result in inflammation, oxidative damage and neuronal death. We previously showed that cyclooxygenase-2 deficient (COX-2−/−) mice are more vulnerable to KA-induced excitotoxicity. Here, we investigated whether the increased susceptibility of COX-2−/− mice to KA is associated with altered mRNA expression and editing of glutamate receptors. The expression of AMPA GluR2, GluR3 and KA GluR6 was increased in vehicle-injected COX-2−/− mice compared to wild type (WT) mice in hippocampus and cortex, whereas gene expression of NMDA receptors was decreased. KA treatment decreased the expression of AMPA, KA and NMDA receptors in the hippocampus, with a significant effect in COX-2−/− mice. Furthermore, we analyzed RNA editing levels and found that the level of GluR3 R/G editing site was selectively increased in the hippocampus and decreased in the cortex in COX-2−/− compared with WT mice. After KA, GluR4 R/G editing site, flip form, was increased in the hippocampus of COX-2−/− mice. Treatment of WT mice with the COX-2 inhibitor celecoxib for two weeks decreased the expression of AMPA/KA and NMDAR subunits after KA, as observed in COX-2−/− mice. After KA exposure, COX-2−/− mice showed increased mRNA expression of markers of inflammation and oxidative stress, such as cytokines (TNF-α, IL-1β and IL-6), inducible nitric oxide synthase (iNOS), microglia (CD11b) and astrocyte (GFAP). Thus, COX-2 gene deletion can exacerbate the inflammatory response to KA. We suggest that COX-2 plays a role in attenuating glutamate excitotoxicity by modulating RNA editing of AMPA/KA and mRNA expression of all ionotropic glutamate receptor subunits and, in turn, neuronal excitability. These changes may contribute to the increased vulnerability of COX-2−/− mice to KA. The overstimulation of glutamate receptors as a consequence of COX-2 gene deletion suggests a functional coupling between COX-2 and the glutamatergic system

    Crop Updates 2007 - Lupins, Pulses and Oilseeds

    Get PDF
    This session covers forty eight papers from different authors: 2006 REGIONAL ROUNDUP 1. South east agricultural region, Mark Seymour1 and Jacinta Falconer2, 1Department of Agriculture and Food, 2Cooperative Bulk Handling Group 2. Central agricultural region, Ian Pritchard, Department of Agriculture and Food 3. Great Southern and Lakes region, Rodger Beermier, Department of Agriculture and Food 4. Northern agricultural region, Wayne Parker and Martin Harries, Department of Agriculture and Food LUPINS 5. Development of anthracnose resistant and early flowering albus lupins (Lupinus albus L) in Western Australia, Kedar Adhikari and Geoff Thomas, Department of Agriculture and Food 6. New lupins adapted to the south coast, Peter White, Bevan Buirchell and Mike Baker, Department of Agriculture and Food 7. Lupin species and row spacing interactions by environment, Martin Harries, Peter White, Bob French, Jo Walker, Mike Baker and Laurie Maiolo, Department of Agriculture and Food 8. The interaction of lupin species row spacing and soil type, Martin Harries, Bob French, Laurie Maiolo and Jo Walker, Department of Agriculture and Food 9. The effects of row spacing and crop density on competitiveness of lupins with wild radish, Bob French and Laurie Maiolo, Department of Agriculture and Food 10. The effect of time of sowing and radish weed density on lupin yield, Martin Harries and Jo Walker, Department of Agriculture and Food 11. Interaction of time of sowing and weed management in lupins, Martin Harries and Jo Walker, Department of Agriculture and Food 12. Delayed sowing as a strategy to manage annual ryegrass, Bob French and Laurie Maiolo, Department of Agriculture and Food 13. Is delayed sowing a good strategy for weed management in lupins? Bob French, Department of Agriculture and Food 14. Lupins aren’t lupins when it comes to simazine, Peter White and Leigh Smith, Department of Agriculture and Food 15. Seed yield and anthracnose resistance of Tanjil mutants tolerant to metribuzin, Ping Si1, Bevan Buirchell1,2 and Mark Sweetingham1,2, 1Centre for Legumes in Mediterranean Agriculture, Australia; 2Department of Agriculture and Food 16. The effect of herbicides on nodulation in lupins, Lorne Mills1, Harmohinder Dhammu2 and Beng Tan1, 1Curtin University of Technology and 2Department of Agriculture and Food 17. Effect of fertiliser placements and watering regimes on lupin growth and seed yield in the central grain belt of Western Australia, Qifu Ma1, Zed Rengel1, Bill Bowden2, Ross Brennan2, Reg Lunt2 and Tim Hilder2, 1Soil Science & Plant Nutrition UWA, 2Department of Agriculture and Food 18. Development of a forecasting model for Bean Yellow Mosaic Virus in lupins, T. Maling1,2, A. Diggle1, D. Thackray1,2, R.A.C. Jones2, and K.H.M. Siddique1, 1Centre for Legumes in Mediterranean Agriculture, The University of Western Australia; 2Department of Agriculture and Food 19. Manufacturing of lupin tempe,Vijay Jayasena1,4, Leonardus Kardono2,4, Ken Quail3,4 and Ranil Coorey1,4, 1Curtin University of Technology, Perth, Australia, 2Indonesian Institute of Sciences (LIPI), Indonesia, 3BRI Australia Ltd, Sydney, Australia, 4Grain Foods CRC, Sydney, Australia 20. The impact of lupin based ingredients in ice-cream, Hannah Williams, Lee Sheer Yap and Vijay Jayasena, Curtin University of Technology, Perth WA 21. The acceptability of muffins substituted with varying concentrations of lupin flour, Anthony James, Don Elani Jayawardena and Vijay Jayasena, Curtin University of Technology, PerthWA PULSES 22. Chickpea variety evaluation, Kerry Regan1, Rod Hunter1, Tanveer Khan1,2and Jenny Garlinge1, 1Department of Agriculture and Food, 2CLIMA, The University of Western Australia 23. Advanced breeding trials of desi chickpea, Khan, T.N.1, Siddique, K.H.M.3, Clarke, H.2, Turner, N.C.2, MacLeod, W.1, Morgan, S.1, and Harris, A.1, 1Department of Agriculture and Food, 2Centre for Legumes in Mediterranean Agriculture, 3TheUniversity of Western Australia 24. Ascochyta resistance in chickpea lines in Crop Variety Testing (CVT) of 2006, Tanveer Khan1 2, Bill MacLeod1, Alan Harris1, Stuart Morgan1and Kerry Regan1, 1Department of Agriculture and Food, 2CLIMA, The University of Western Australia 25. Yield evaluation of ascochyta blight resistant Kabuli chickpeas, Kerry Regan1and Kadambot Siddique2, 1Department of Agriculture and Food, 2Institute of Agriculture, The University of Western Australia 26. Pulse WA Chickpea Industry Survey 2006, Mark Seymour1, Ian Pritchard1, Wayne Parker1and Alan Meldrum2, 1Department of Agriculture and Food, 2Pulse Australia 27. Genes from the wild as a valuable genetic resource for chickpea improvement, Heather Clarke1, Helen Bowers1and Kadambot Siddique2, 1Centre for Legumes in Mediterranean Agriculture, 2Institute of Agriculture, The University of Western Australia 28. International screening of chickpea for resistance to Botrytis grey mould, B. MacLeod1, Dr T. Khan1, Prof. K.H.M. Siddique2and Dr A. Bakr3, 1Department of Agriculture and Food, 2The University of Western Australia, 3Bangladesh Agricultural Research Institute 29. Balance® in chickpea is safest applied post sowing to a level seed bed, Wayne Parker, Department of Agriculture and Food, 30. Demonstrations of Genesis 510 chickpea, Wayne Parker, Department of Agriculture and Food 31. Field pea 2006, Ian Pritchard, Department of Agriculture and Food 32. Field pea variety evaluation, Kerry Regan1, Rod Hunter1, Tanveer Khan1,2 and Jenny Garlinge1, 1Department of Agriculture and Food, 2CLIMA, The University of Western Australia 33. Breeding highlights of the Australian Field Pea Improvement Program (AFPIP),Kerry Regan1, Tanveer Khan1,2, Phillip Chambers1, Chris Veitch1, Stuart Morgan1 , Alan Harris1and Tony Leonforte3, 1Department of Agriculture and Food, 2CLIMA, The University of Western Australia, 3Department of Primary Industries, Victoria 34. Field pea germplasm enhancement for black spot resistance, Tanveer Khan, Kerry Regan, Stuart Morgan, Alan Harris and Phillip Chambers, Department of Agriculture and Food 35. Validation of Blackspot spore release model and testing moderately resistant field pea line, Mark Seymour, Ian Pritchard, Rodger Beermier, Pam Burgess and Leanne Young, Department of Agriculture and Food 36. Yield losses from sowing field pea seed infected with Pea Seed-borne Mosaic Virus, Brenda Coutts, Donna O’Keefe, Rhonda Pearce, Monica Kehoe and Roger Jones, Department of Agriculture and Food 37. Faba bean in 2006, Mark Seymour, Department of Agriculture and Food 38. Germplasm evaluation – faba bean, Mark Seymour1, Terri Jasper1, Ian Pritchard1, Mike Baker1 and Tim Pope1,2, 1Department of Agriculture and Food, , 2CLIMA, The University of Western Australia 39. Breeding highlights of the Coordinated Improvement Program for Australian Lentils (CIPAL), Kerry Regan1, Chris Veitch1, Phillip Chambers1 and Michael Materne2, 1Department of Agriculture and Food, 2Department of Primary Industries, Victoria 40. Screening pulse lentil germplasm for tolerance to alternate herbicides, Ping Si1, Mike Walsh2 and Mark Sweetingham1,3, 1Centre for Legumes in Mediterranean Agriculture, 2West Australian Herbicide Resistance Initiative, 3Department of Agriculture and Food 41. Genomic synteny in legumes: Application to crop breeding, Phan, H.T.T.1, Ellwood, S.R.1, Hane, J.1, Williams, A.1, Ford, R.2, Thomas, S.3 and Oliver R1, 1Australian Centre of Necrotrophic Plant Pathogens, Murdoch University, 2BioMarka, University of Melbourne, 3NSW Department of Primary Industries 42. Tolerance of lupins, chickpeas and canola to Balanceâ(Isoxaflutole) and Galleryâ (Isoxaben), Leigh Smith and Peter White, Department of Agriculture and Food CANOLA AND OILSEEDS 43. The performance of TT Canola varieties in the National Variety Test (NVT),WA,2006,Katie Robinson, Research Agronomist, Agritech Crop Research 44. Evaluation of Brassica crops for biodiesel in Western Australia, Mohammad Amjad, Graham Walton, Pat Fels and Andy Sutherland, Department of Agriculture and Food 45. Production risk of canola in different rainfall zones in Western Australia, Imma Farré1, Michael Robertson2 and Senthold Asseng3, 1Department of Agriculture and Food, 2CSIRO Sustainable Ecosystems, 3CSIRO Plant Industry 46. Future directions of blackleg management – dynamics of blackleg susceptibility in canola varieties, Ravjit Khangura, Moin Salam and Bill MacLeod, Department of Agriculture and Food 47. Appendix 1: Contributors 48. Appendix 2: List of common acronym

    Identification of a microRNA signature of renal ischemia reperfusion injury

    No full text
    Renal ischemia reperfusion injury (IRI) is associated with significant morbidity and mortality. Given the importance of microRNAs (miRNAs) in regulating gene expression, we examined expression profiles of miRNAs following renal IRI. Global miRNA expression profiling on samples prepared from the kidneys of C57BL/6 mice that underwent unilateral warm ischemia revealed nine miRNAs (miR-21, miR-20a, miR-146a, miR-199a-3p, miR-214, miR-192, miR-187, miR-805, and miR-194) that are differentially expressed following IRI when compared with sham controls. These miRNAs were also differently expressed following IRI in immunodeficient RAG-2/common γ-chain double-knockout mice, suggesting that the changes in expression observed are not significantly influenced by lymphocyte infiltration and therefore define a lymphocyte-independent signature of renal IRI. In vitro studies revealed that miR-21 is expressed in proliferating tubular epithelial cells (TEC) and up-regulated by both cell-intrinsic and -extrinsic mechanisms resulting from ischemia and TGF-β signaling, respectively. In vitro, knockdown of miR-21 in TEC resulted in increased cell death, whereas overexpression prevented cell death. However, overexpression of miR-21 alone was not sufficient to prevent TEC death following ischemia. Our findings therefore define a molecular fingerprint of renal injury and suggest miR-21 may play a role in protecting TEC from death

    A gasometric method to determine erythrocyte catalase activity

    No full text
    We describe a new gasometric method to determine erythrocyte catalase activity by the measurement of the volume of oxygen produced as a result of hydrogen peroxide decomposition in a system where enzyme and substrate are separated in a special reaction test tube connected to a manometer and the reagents are mixed with a motor-driven stirrer. The position of the reagents in the test tube permits the continuous measurement of oxygen evolution from the time of mixing, without the need to stop the reaction by the addition of acid after each incubation time. The enzyme activity is reported as KHb, i.e., mg hydrogen peroxide decomposed per second per gram of hemoglobin (s-1 g Hb-1). The value obtained for catalase activity in 28 samples of hemolyzed human blood was 94.4 ± 6.17 mg H2O2 s-1 g Hb-1. The results obtained were precise and consistent, indicating that this rapid, simple and inexpensive method could be useful for research and routine work
    corecore